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NATTONAL ADVISORY COMMTTTEE FOR AERONAUTICS

ADVANCE RESTRICTED REPORT

A THEORETICAL THNVESTIGATINON OF THFE ROLLING OSCILLATINNS
OF AN ATRPLANE WITH AILEROIS FREE

By Doris Cohen
STMMARY

An analysls is made of the stability of an airplane
with ailerons free, with particular attention to the
motions when the allerons have a tendsncy to float against
the wind. The present snalysis supersedss ths aileron
investigation containsd in NACA Report ¥Wo. T09. The
egquations of motio st

ion are first written to include vawing
and sideslioving, and 1t is demonstrated that the nrinci-
pal effects of freeing ths ailerons care be determined

!
without regard to these motions. If the ailerons tend
to float agoinst the wind and have a high degree of
acrodynamic belance, rolling oscillations, in addition

to the normal lateral oscillations, are likely to occur.
On the bhasis of the equations including only the rolling
motion and the aileron deflection, formulas are derive
for the stability and damping of the rolling oscillations
in terms of the hinge-moment derivatives and other char-
acteristics of the ailerons and alrplane. Charts arse

also presented showing the oscillatory regions and sta-
bility boundaries for a fictitious airnlane of conventional
proportions. The effects of friction in thes control

system are investigated znd discussed.

If the allerons tend to trail with the wind, ¢
dition for stable variation of stick force with aileron

deflection is found to determine the amount of asrodynamic
balance that may be usecd. Tf the allerons tend to float
against the wind, the period and damving of the rolling

oscillations are found to be satlsfactory (in a mass-
balanced systom) so long as the restoring moment is not
completely balanced out. Unb&lanced mass behind the
hinge, however, has an unfavorable effcct on the darmping
of the oscillations and so shifts the boundary that close
asrodynamic balance may not bc atteinable, Tt is found
that friction may retard somewhat the Aamping of the
alleron-free oscillations but in no case causes undamped
oscillations if ths allerons ars otherwlize stablec.



TNTRODUCTION

The nroblem of the stﬂbilify of dn alrplane with
allerons free has becn treated in refercence 1 as an ad-
Junct to the investigation of 1<v1tor- and rudder-free
motlons., More recent developments in ailceron design
have led to an Increased intercst in the possible effacts
of positive floating tendency, that is, a tendency for
the allerons to move downward as the angle of attack is
increased. Oscillations observed in flisht have been
thought to arise from this condition and have “W@gested
the present more thorough investigation,in which particuler
attention 1s glven to tle motlon° when thn iloat;nL
tendency is positive. The present analysls is intended
to supersecde complately the alleron investigation of ref-
erence 1.

In the present analysis the equations of motion are
first written to includs «ll laleral degrees of freedom —
sideslipnirng, vc»fnv and rolling « and movement of the
aillerons. A numertcal example is then ased to show
that the 1mno"tant Iinformation concernin» tha motlons can
be obtained by investlgation of the rolling and aileron
motions elone, although a somewhat modificd interpreta-
tion of tlie results may te indicoted. Recause most
allercns are mass-balanced about the hinge axls to avold
flutter, the mass-moment parameter repre senting the effect
of rolling acceleration on the ailsron pos sition is also
omitted i“om the bulk of the =anslysis. With these
slmolifications it then becomes possiblz to derive, in
terms of the remaining alleron and airnlane charscteris-
tice, general formulas for the rate of damning of the
oscillations, where oscilllatlons exist, and eguations
expressing the conditions for stability. The hinge=-
moment characteristics of the allerons will be considerad
the principal variables.

Charts will be presented to show numerical results
In certain cases. In these exarples the effects of the
mass character istiC° of the allerons, which rcannot
readily be expressed in general formulas, will be lnvesti-
gated. A dlscuszion of the ¢ffzct of friction in the
control sygtom will also be Tnbludbd-
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Swmbols used In describing motions (all angles are in
rudians) s
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vawing moment

rollinrg momen

toin ulllng—mom\nt coaff
in 1ift ceoeffilc b

hinge moment

ilelent; 1Lift



Nondimensional quantities:

W= XS airplane density parameter

i~
b
H
L
l 3
7
e —
N
Mo

m <7 e
I_= — alrplane moment of inertis about Z-sxis
Z sfb \v/2
\"7 “
- 2
T, Ka s
I = 3 T3 alleron momort of inertia about hinge
pecg by \/ < ax?is
T -\2f
AH/AD - . _
E = m—l%?—Jé mass-moment parameter, hinge axis (Fon~
dcg g dimensionsl expression for effect of
‘nertia of aileron system in causing
aileron deflection when airplane iq
cceleratad in roll.) For aileron
alonse,
A — x T ‘\72
Ta ..
3D b/2 b/2
tf ratio of flap chord to airfoil chord at a given
section
D= a = b2 a differential onsrator, N
/ g Yy 3t
bl » - o]
particular, DF = &=
b/2 2V
A root of stability equation
~1 real nart of K, proportional to rate of damping
of motions
n magnitude of 1maan ry art of A\, ovroportional

airplane moment of fnertia about X-axis



Ch vawing-moment coefficient g
qsSb
Cl rolling-moment coefficient L
aQst,
Ck hinge-moment coefflicie
* :
. e s I
Cr, 1ift coefficlent [—
as
1y
Cy side-forse cosfficlent [J—

Subscripts asttached to moment coefflcients indicate
the partial derivative ol the coefficient witn respect

to tiwe quantity denoted by the subscript. Tn narticular,

L 80y . .

Ch, = = 1inge-moment coefficient due to unit ailleron
5 Se detflectlon, or restoring tpndency. ne-

storing tendency 1g positive when surface
1s overbalanced

Ch = = hinge-moment coefflcient due to unit ciange
o« Cc ‘n local sangle of attask, or floating
tendency. Floating tencenzsy 1s positive
when surface floats apainst the relative
wind

Ch = hinge-moment coeffizient dus to unlt rate
D& oTH of deflection of ailerons (generally the
acrodynami~ damning, but may include
viscous friction in the control aystem)

~
C, = énl rolling moment due to unit ailleron deflec-
5 0 tien, or effectivoness of the allerons In

nroducing roll
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The var!able D% s held constant

vart of additional 1ift due to angular velocity
of flap caused by acceleration of potential
flow ('Th of reference 2)

part of additional 1ift due to angular velocity
nf flap cuuced by eflfective increase in

—*l of refsesrence 2
27

cambsyry

nart of hinge moment dqe to angular velocity of
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flap caused vy acce ation of onotential flow

/. I m
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ol -
Lo tp
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part of hinge woment due to angulsr velocity of

flap caused by c¢ff=ctive incresase in camber

T 1 T,

—l——~——, where T and T are given in
a2 2 11 12

T tf

reference 2

in talking the
partial derivative wth resnect to & or DI, which is

equivalert to holding a constant,

The followling symbols are adopted because of comm

usage:
_¢Cy
p 22
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aerodynamic damping of the airnlane in roll
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ANALYSI3
Equationas of Motion

Tha general equations of lateral motion with allerons
free, nonv?ing the rolling motion of the ailrplane with
the yawing and sideslipping motions and with the movenents
of the allerons following a small disturbance, are as
follows:

. A
v+ W) - 8L - ghmg =0 (1)
o
. N N i . T N . 1
mk Y - 9; - B oM _ o ﬁ& - 50 _ 5 Qﬁ =0 (2)
Va oW d @ D ols) o5
> oY//4 oL QW ¢ &5 -
" <o T 24 . Al g
makaz 5 - Qf .(3_‘1 - B3 QE - é - 8 Q.Tl - _(:i: + 75 g}i = 0 “.J)
S 03 Y] 05 08
where the dot over a guuntity denotes its derivative with
respect to time. -

v = 3V, Tividing
(2) by 4sSb, eqna-

-

For small angles of sidesliin
equation (1) by gS, ejuations (

2

tisn (4) by q?a b and intreoducing the nondimencional

a’

operator D =

vields the following nondimenslonal

(b/a/

equationsg:s

(L‘“D‘Cyg) 3= Crff +hu DU = 00
‘CnBB-CnDDﬁ * (2130 - CnP)DW - 6”13 D +73 Cn5)6 =0

I
'CZBB+ CaTXD-CLD)UW - CZrDW - (CIDSD + CL5)6 =0 )
-Qhﬁﬁ+(.§ﬁ - ChD¢>D%- ChDﬁnw'*(27a32‘CbD5D—Ch5)6 -5
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If solutions are assumed to have the form Ce b/?

the exponent M must sat‘sfv the stability equation in D
obtuined by setting ths cterminant compos ed of the
coecfficients of 8, 4, Dv, and 8 equal to zsro. In
ths general case dsscribed by eguations (5), the stability
ejquation is of the sixth degree in A and the six roots
may indicate motions composed of as many sg three oscil-
latory components. By means of simplifying assumptions
iustifiud by the examination of numerical ex=smnles , the
stavility equation will evs ntually be reduced to a cubic.

Prelinminary Calculations
It 1s first proposcd to simplify the analysis by

neglecting the counling between the roipr: motion and
the yawing and S]ku]l“ﬁlpg motions. In order to test

f, validity of suzh a treatment, two sets of calculsntions
have bmen made for a spascific hase, one set including
t1 ross-coupling, end one set considering only the

rolllug and ailsron motions.

Numerical values ass umed.« The airniane character-
l1stics assumed are given .n table T. A 1ift coefficient
of 1,0 was chosen to magnify sany differences hotween the
two results. The stability derivatives were obtained,
with ths exception of Gy, from table I of rofarence. 5
The value of C[p was ta gen Trom reference l, on the
assumpbion of a 2:1 tapered wing of =2apect ratio 6. The
mass cbqldctorjstics are Lntendé to be renresentative
of a conventional '

The ailleron characteristics assumed are for 15-
nereent-chord allerons covering the outer LO percent of
the wing span. The values of the derivatives are listed
in table II., The allcrons were assurmed to be mass-
balanced; consequentls, € = 0, The moment of inertia of
the allerons was also talen egual bto zer (The Valldnty
of & cowmvarison made on the basls of gzer mnu\nt of inertia

will be checked in a subd SGQQth saction,) The hinge-moment
parameters Cha and Ch& were retained aos the principal
variablees,

Nature of the motions, four dogrses o £
The composition of thy motiong, as indicatsd By the roots
of the stability c¢guation for various combin
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Cha
& equal to zero, the stability equation for this figure
is a quintic and thers are, therefors, five roots to be
accounted for, Tt 18 possitle to conuidar separately
one r2sl root; this root nasses throush zero along & line
de signated in figure 2 as the spiral divergence boundary.
Tn the region around the positive C,q -axis the remaining

and Op_ 2 18 described in figure 2. ith I, and
6

1
_ a
four roots form two complex pairsz, Indicating that the
motions have two osclllatory components. Alonq the

long-dashad curve one osclliation disintesrates into two
aperiodlic modes, diverpent or convergent acuordan ;1Y as

MO

thie oscillatlons are stable or unstable; at =11 values
of Cb anda 3. outside this curve the motion is

g X
composed of one oscillatory mode, which 1is slmost always
stable, and thrse nonoscillatory comporents. Tnside the
curve, the two OnuilldLOfy components are stable so long
as ”}9 is negative. As Cy Lecomas nositive, in-

& U
stability sets in, as indlcated by the osclllsatory sta-
bility boundary. n gensral, only one mode DsIOMESE

nstable; the sarme oscillation breaks down ints two
aperiodic modés st & slightly larger valae of Ché.
In 2 smell region (A3 in figurs. <) definsd by the inter-
section of tha two branchos of the boundary, both modes
arg unstable. This detall and others ocsurring outside
ths stabls region, or near ths boundary, arc nct con-
sidered of any practical lmportance: they are 1nnil
orcor U answusr qwutlona that misne othorvicy bs

T~y NETETIONPS L - no_
by wnaprcsion of the ITloure,

::th of d‘VhPLPQCb, four deprecs of frecdom.- Tiag-
much @s Llpurc £ indicates that (re motions will be un-
stable for most cowbinations of veluss of Cr and Cb s
it sewms advisable first to examins the naturg of the °
divergent instabllity, woich y Loat thvoeloanla,
The conditlon for ancutral taoLL‘f‘ fzorn root) 1s that
the constant term of the stablthy squation vanish; that

Te,
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Ch6 Cz‘Ch‘ - C7J>C‘»w + Chn Cn C

+ AC, C c - C, O = 0
h {¥ng [ n-ﬁ>

The rate of divergence for the unstable values of Ch
“a
and C:h;

b

(for the specific case to which fig. 2

-
pertains) is indicated by the lines of equal roots in fig-

ure 2. Although these linece apwuear to go through the

origin, each has its intercept at a positive value of

Ch proportional to the value of the root. For small
8

values of the root, however, the intercented distance is
negligikle, and the loci may be considered lines of con-

C
' “h

stant floating ratic = = - -9, Figure 3 shows tliat the

e
divergence over most of the raange of negstive C is

8

very slow. This divergence 1s, in fact, the so-cazlled
"spiral instability" that is gernerally anticipated by

airplane designers. In the fourth gquadrant, however, a
sudden rapid increase in the rate of divergence is ob-
served, which corresponds to a change of sign in the
coefficient of AN in the stability equation. from the
practical noint of view the floating ratio at which this
sudden incresase occurs locates the significant "divergence
boundary." 4 line through this region and the oscilla-
tory stability boundary may therzforz be considsred the
comrnlete boundary for stebility of the alrplans with

all four degrees of freedon.

£

Zguations for two desrses of fresdom.- The infor-
mation obtained from calculations neglsctng thse yvawing
and sideelivping motions will now be consldered. The
equaticne of motion si-plified to inzlude only coupling
betwesn rolling and alleron motion are as follows
(nondimensional form):

’ \
f21.D - o, \¥ - (0, D+, )620
X UD/’ e 8
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and the stabillty equation is

Nature of the mntlons, two degrees of [reedom.- Tor
the cnse deilned vy twlleciy and 771, rEf cTionms are as

» o g 1 -
described 1n fi;ure l. The Suqo111+” at S oA
cublc, and there 1s again one real rﬂot i h comes
zero at the divergence Loundary. The zemc'niﬁx two

roots form a comvlex pair, indicatin: en nuil'“torj
mode, ins.de ths resion deiined ny tie 1Dﬂ£‘uﬂohud cnrve.
ﬁutﬂiﬂﬂ tnls rogion 2all ihree ronts are renl and no

CLidoo

oscillations ncour, The o""LLl tione becme nistable
at a =zmall rosiiive values of CH , which is almost Inde-
Af.)

pendant of the value of Ty e

s, two and four depgreas of

“the tWO'CQmputﬂtLQ“Q can now be

. Comparison of fizares 2, 3, aud L
fectlve divergence boundary of the

= (shown by the dotted line in fig. 2)
may bb &uuum“d tﬁ “01ncido with ths true diversoncs
boundary 1n the simnlified cass. Thus, where the simpll-

Comoarison of rogsult
2adny.,~ Ghe recllts of
for agrcement
g Lkat the ef
0

fizd “quJ\lﬂ nﬁi ates a change from stabhility to in-
stability, the 18 actually a sudden transition from a
slow ﬂlV“PFCFCO to a renid ons. Ths comparison may be
extsnded into thv first guedrant of the charts. Here

ths divergoncs boundary aoncars, in the mors sxact
ansiysis, as a bdrasnch of the boundaery between damped and
undsmped osclllations (linc 04, fig. 2). The oscilla-
tions arc, howiver, on the point of breaking down into
aperiodic modes and the instability would *n pvractlics

be 1ndistinguishable from uniform divergence. In ac-~
cordance w tth thege obscrvations ths l1nv of zaro roots
obtained from the sipplified anaiysis wlll bs termed

the "diVu%gonﬂﬂ poundary," with the undsrstanding that
such & dzgipgnation is otr¢ct1y true only vhen the cross-
counling is negligible.
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Further comparison of figures 2 and L. shows that
the oscillatory stability boundary of the simplified
treatment, although shifted slightly by the introduction
of the additional dsgrees of freedom, 1s so 1ittle altered
that it also may be retained as part of the stability
boundary. Moreover, the position of the line enclosing
the oscillatory region remains essentially unchangsd snd
st1ll indicates the values of the hinge moments at which
one oscillation breaks down. It may thercfore be con-
cluded that, except for ths presence everywhere of an
additional mode of oscillaticn to be discussed subsequently,
the broad asvects of the solution for the more complex
case may be deduced from the results of the simplified
analysis.

Comparison of the roots at a number of points shows
that the results of the two calculations are in close
quantitative agrecement, also, with regard to the oscilla-
tory mode common to both analyses. Thus, both the
period and the damoing of the oscillations of one mode
can be obtained from the results of the simplified
analysis.

The oscillations of the second mnde have both
damping and period virtually independent of the hinge
moments of the ailerons. In the case chosen for
illustration the period is of the order of %20 semispans,
or, if the span 1s LD feet and the wing loading L0 nounds

, ' Coal N X \

per syuare foot, about 5§ seconds, throughout the range

of (¢ with ¢ negative; the motion Adamps to half
ha h S .

amplitude In the course of one oscillation. Because
the zileron characteristiecs ars riot invelved and because

of the magnitudes of the period snd damping, this mode
appears to be the normal lateral oscillation of the
airplane with controls fixed and as such is tresated
elsewhere in the 1literature. For the assumed airplane
this mode does not become unstsble anywhere within the
region indicated as stazble by the simplifisd analysis.

Effect of aileron moment of inertia on cross-
coupling.- It secems desirable to chezk the forsgoing
conclusion against results obtained with the moment of
lnertia of the aileron system rstainsd in the eguations.
For this purpose, the roots of the stability equations
have been calculated at Cp = 0.15 and Ch6 = 0.02,

a
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-0.,1, -0,2, and -0.3%, with I, = 0.025. with four

degrees of freedom, the stabwlltv equation has six roots.
0f these, one root indicates ths spiral mode and, in the
unstable region, has the same values as are given by

figure 3 for the case with zero moment of inertia. A
second real root corresponds to the real root of the
simplifiled equation. The four remaining roots form,
in general, two oscillatory rairs. These roots &are

compared with those of the simplifiecd equation in the
folloving table:

Two degrees

C \ Tour srress P f'ree Y
h5 of fresdom, our degrees of frsedom,

T, = 0.025 Tg =095
0.02 | -0.00%7 £0.191 | -0.00LL ¥ 0,221 |-0.02h6 £ 0.1101
-1 l-1.0hz o+ 3Lz -1.08z 0 L8m1il -.0253 & ,1991
-2 |-1. 3/7 To1.6600 ] 21,081t 1.68L1| -.0205 0 .1901
-3 | -1.0936 F 2.1361% -1.083 t 2.1801 —.Q_Ll +  ,199%

At Ché = 0.02, where the perioda are of the same ordsr of
megnitude, the affect of thoe cross-coupling is seen. Else-
where the period and damping in both caleulations agree
within 1 phercent. Tt apncars rcasonable to concluds

that the statements of ths prscoding section hold in spite
of the omisslon of the &lleron moment of Incrtia from the
calculations.

Simnlifisd Analysls

Using the reduced form of the stability eguation
makas it vossible to Investigate the sffects on the
stability of tho airplsne of verying the alleron char-
acteristics, and cvin to glve *rrtaln general formwulas,
Because most modern diJDl‘n s arc designed with ailerons
commletely mass balanced, these formulas may bs still
Murther stmplificd by assuming & cgual to zero.

Mleron=-frze os~illations.~- The oscillutions as-.

soclalcd with froeing the allsron controls can now be
investigated in mor: detail. T{ a patr ~f roots 1s
asgwacd In the  Dorne A= -atnt, a rcletion can

be dorived givinﬁ the frequenc
fieciunts of A in equation (7). This rclation is too
lengthy to bpe o”‘sertaé in its general form; however,

calculations have be made from it and the results will

v 11 in terms of the cosf-
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be shown in the form of lines of equal period P = 2w/n
on the stability ckarts.

The damping of the oscillations 1s more readily
expreseible than 1s the period, perticularly 1if a fixed
value of the frequency is assumed. Moreover, calcula-
tions of the damping for zero frequency and for the
highest frequency likely to be enccuntered in practice
showed that the expression could be still further simpli-
fied by omitting the terms containing the 1requ@nﬂy and
C (since these terms apnarently canceled each other)

a

without any svpreciable loss in accurscy. Thus, with
qual to zero, the damping a iIs, to a good approxi-

on, the smaller root of the quadratic

C oF c o
T, Ty hr 1, eI,

oY .
‘a
At the stability boundary, the dampning a 1is zero,
and, therefore,
3, Ch
- NS g
C ZD "1D5 (O)
- ./
hig -

-X

The more aczurate exnression for this boundary is
obtained by setting Routh's discriminant equal to z=zsro.
The result is a2 linear relation between Ch and Ch :

4]
that is, . ¢
_ \J Z'p
“ng T 572 P fx t Cute )
,L,X
C C -+ 2C, T4+ + 7, C
=t\ ~ 1 leta A S
7'\ “hps“ips' g 2 0 Tly"lnsTa 10)
- Cy,
b/2 27 i ~ a
Lo vl
X Nns
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Figure ., however, shows the variation with C,,1 to be
a
ectunally guite small.

Stick-force criterion.- The dlvergence boundary 1is
obtairned Dy setilng the constant term of the stabllity
equation equal to zerc; then,

C - ©
hg y'\ s
3 (11)
Ch, b/2

This conditicn for nsutral stability is identical
with the equation for zern slope of the hinge-moment
curves

dch C’..D’)f

— =g, 4 S0, = .
b iy " Ty Onpg T O (12)

and is tharefore also identified with the condition for

zero stick foreca in nure roll or in a ranid rolling

as the stick force per unit deflec-
i

maneuver. Tnazmach

. . . GGy . :
tion of the allerons is proportional to <5 lines of

V)
constant stick reorce are obtained by replacing the zero
in equation (12) by sopronriate constants. The rolling
, X and b . \ .
effectiveness, 7;5 = B2 per unit aileron deflection,
>0 2V

is indevendent of the hinge momonts; the nqAQtion for con-
stant stick forece therefore results in a fawmlly of
utvujfht iines narallel to the divergence boundary of
uatlon (11) and the criterion for light stick force for
given cileron Almensions cnd effectlveness is the close-
ness with which that boundsry is approached. A com-
parison of ons aileron with another, however, shows thet
the stick foree will &lso be nroportionzl to the velug
of Eqaby.

b
‘

Method of investigafing the effect of friction.-
When the efTe:% of irfction in the control sistem 1s
considered, 1t is necessary to distinguish between two
types, viscous friction and solld friction. Viecous
frietion, vhish variesz with tihe spesd of the flap de-
flection, is exnctly equivalent to an increase in Gy

s
Db
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kerstofore considered to be due only to the asrodynanmic
damping of the ailcrons. 801id friction acts in a mors
complex way but may be approximated by an equivalsnt
viscous doamping, the amount varying inversely with the
amplituds of the deflection. {A more Actailsd dis-
cugsicn of this sgporoximation is given in reference 7.)
Thus, in the course of a damped oscillation, for example,
the apparsnt 0O increases and ths question of the

iorn reducez to the question of whether

D&
eff@ot of the frict
Cy is stabilizing or destebilizing.
™/

en incrsasgse in

EXPT.ANATION OF CHARIS

The stebllity charts (figs. 5 to 9) are intended
bothh as illustrations of the spplicatlion of the pre-
ceding formulas and as working ,harts from which the
behavior of a »narticular set of ailerons on a con-
ventlional airplane may bz sredicted. If tre anslysis

is to be apprlied to an ailrplane having stability char-
acteristics that represent a considerable departure

from those tabulated herein, it will probubly oe sdvisable
to calculate the nature of the motions from the general
formalas (equations (7), (&), (19), and (11)).

® (9

e

-~

Flgures 5§ to 5 show the oscillatory regil
lirnes of edqual neriod in those reglons, as well
stability btoundaries for aileron-fres motinn.
damning of the oscillsations 1is shown separately in
Figures 5, 6, and 7 show the results for 1%-percsent-
allerons with three diff=srent momsnts of 1nert1d co
a wide range of values. In all othsr res»ects th
allerons are those oreviously used as a basis
nreliminary calculations. The airplane charsac
are thosc glven in table T. Tigur

-
ct Qo
o)
6]

o

oy

Y]
+ 3
OHJ(D

<
DT
3 O "3
e 1_3 .
ot
S
-

5
stability rcegions for 30-narcent
gsama elicctiveness O as the

.
v

of figures 95, 6, and 76 The snan for thes wider silerons

would be Ep pcrasnt of the wing span, as against L0 ner-

cent for the narrower ones. The nther characteristics

of the 30-nercent-chord allerons are listed in table IT.

Two va lb°s of T, are presented for cormparison. The

airplane characteristics are not changed from those of
table I,

o




18

In figures §

J

to 9, thevvalue used for the aerodynamic

damping of the =ileron motion Oh is the theoretical
D¢
value for unbalanced flans (fiz. l?. The wvalue of Ch
D&

actuslly varies with the arount of valance and is there-

fore not censtant for =n;y one chart. Moreover, the

variation depends on ithe murmer in which the balance 1is

obtained, The variation 1&, however, slight in any
case -~ less, for exammle, than the amount introduced by

friction. (if balan~ing srea is added ahead of the

hinge, zcommlete balance involves approximately 15 nercent

reduction in 7 from the theoreticsl value.) The

"'Db
variation of Chos with Ch. and Cp , there fors, need
DS 3 a
not be incornorated into the charts. The effect of a
change in Oy may he estimated by a comparison of fig-

[Dls)
ure 5 with fiszure &, and of figure 6 with fipgure 9, inas-
much as the nrincinal difference between the calculations
for the narrow- and wide~shinord ailerons »f the same
c¢ffectiveness is an inecrease in 70 . .
h
DH
The relative magnitudes of the st

ick forcas for the
narrow~- and wide-chord allsrons svre indl
re
ed

ated by ths

o
gnecing of the linss of equal stick force in fiﬂur s %

end 8. The hinge moments are express in these fw"urcs
in terms of the mean wing chord in order to make U03b¢bl’
& Adirect commarison of aztuxl Iorces. As previously

notsd, all the linez are parellel to the lins of zero
stick force, that is, to the divergence boundary.

8]

w

Tigure 12 shows the distance resguired for th

oscillations to darm to ons-half amplitude. Thils

distrnce 1o 0.6%%2/a, where a 1is given by equatlion (3).

A single value of T, was sclscted, and the distance to

damp to ome-half ammlitude waz nlott:d against Gy for
. o)

several values of C’DG' The figurc was designed

primarily to scrve as the basis for the dlscussion of

the  eTfect of frictior end is, thersfore, more i
genera2l thon thoe oreceding charts. The d“muing for

l15=nercent- chovu ailsrons without friction is also shown,

howe ver, (to b @oplicd to i, 6) and the damping for ‘

30- pcrcbnt-ohord allerons, Ié = 0.025, (to be used with
flg. 9) may bes undsrstood to coincide with tihhe line for
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Cy, = -0.2. The inclusion of lines for other valuss
Da
of I, would not affect the coneclusions to be drawn

from the figurec.

Tn figure 11 the stability boundaries are shown in
the seme form as in figures 5 to 9 for values of &

varying from complete balance (& = 0) to a value roughly
corresponding to that for en aileron with center of sravity

20 percant of 1ts chord hehind the hings (& =-0.6).

From equation (7) 1t can be scen that § doe not enter

into the stick-force criterion. Routh's discriminant,

however, 1s derivable as an eszentially linear relstion

between 0  and <. Although the boundariss shown
5

srs for I, = 0.0125, they are practically invariant

wilth the moment of inertis, The effects of increasi

the demping of the ailsrons or Sy, ~and ol 1aﬁgi

pJe)

ther change affecti

th the othcr varia

)

, re substantially additive, nei
the variation of critical Ch wi
1y connludod from figure 11, thersfore,
of unbalanced mass bshind the gileron
he vermiscible degres of asrodynamic

Oscillatory regions.- Tt may be sesn from the fig
that in all cases rolling oscillations (in addition To

the normal lateral mode) Vlll follow a disturbance JI
Trom figurss & and

Chy is small snd 0y is nositive. i

' i
9 it may be concluded that the range of Ch@ for which
oscillations arse possible increases with the WL@t“ of
the ailerons. As nreviously suggested, figures and 2
may slso be understood to indicate the incresse in tre

(
o!
extent of the oscillzatory region with increased Gy

due to any other cause.

Effect of T,.~ Comparison of figures 5, 6, and 7

a* O
and oi figures ¢ and 9 shows that the mement of insrtia
of the alle rons introduces & sacond oscillatory region,
On further investigation, ths oscillations in this
regicn ares found to be very ranid but well dampsd. Roth
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damning and period depend almost entirely on the tendency
of tkv ailerons to resist deflcction, as expressed by

Ch s “h and the moment of inertia I, (Ses section

5 Do .
entitled "Rffect. of aileron monent of inertia on cross-
counling! for values of the roots in this region.) The
motion 1s therefors internreted as a flanning movement

of the aile-ons uncoupled with the motion of the airplane.
This mode is s0 well damned (maximum distance to damp to
helf amplitude = 0.6% semispen in the renge considered)
as to e of no prsctical impmortance and further discuc-
sion will therafore be limited to the rolling oscilla-
ticns ocsurring in the nelghborheood of &y = O.
i
Poriod of the aileron-free rolling ozcillations.-

The period of the rolling osclllatlons depends to & large
extent on the {loating tendency of the ailcrons. When
Cha = 0.4, for cxample, the period for narrow allerons

may be of the order of 15 semispsns, or, if the airplane
is traveling at ;00 feet per sccond and has a [j0-foot
wing span, threc-guarters of a sccond. I the cass of
wlder allerong or of ailasrons with smaller positive
floating tendensy, the period 1s consideravly longer.

Damping of Oscillsations

Tt is perhaps orcferable to conslder the period in

conjunction with the demding of the oscillations. The

distance roguired For the oscillations to damp to half

arplituds 1s shown in filgure 10O, Adnlication of fie-

ure 10 to the preceding lwpures indicates thst, so long

as Ch 18 negative, the motinn dsmne to half amplitude
o}

in a fraction of an ogcillation. Tf the ratio Ch-/Chgﬁ

is in th: ne i;“oﬁrﬁooo of 0.% or graster, the ratio of
period to demning distancs 1s so large as to make the
motion in c¢ffect a uniform subsidencoe.

Effect of airnlane characteristics.- Tt should he re-
membered that the >receding conclusions are based on com-
putations for a particular airplane and are not

guantitatively applicablz in goneral. Tf the r“tlo of
damoing in roll to momrent of ifnertis in roll /[ e
p

is numerically greater than the velue of -0.l assumed
for the examnle, the damping of the oscillations will be
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more rapid than is shown by figure 10. In addition, the
boundary will be shifted to the right, with the amount of
rositive Ch@ allowed increasgcd provorticnately to the

increase in Gy /IX (equation (9)).
n

With the exception of the considerable effect of un-~
balanced mess, shown in figure 11, no factors other than
those just discussed enter criticsally into the damping
or stebility of the oscillatory mode. The effzsct of
variations in floating tendensy can be seen in figures >,
to 9, where lines of ruual demping would be very ne r13
parallel to the osci-latory stability bounda rl,s. The

paramater CL , ths aileron sffectiveness, enters into
¢ssion for the stability boundary fegquation (10))
in combination with Ch and has s m¢lurly little
‘a

influence on it. (It may be noted here that the period
of the oscillation is &lso affected by a chengs in O,
’H
in roughly the sume way as by 2 proportionate change in
CP ? Tha momont of ingrtia of thc ailerons apnhears in
‘a
equation () for the damoing, acting to rsducs the tine
required for daming to half amolitude. The effect of
I, on ths position of ths boundary (zero damping) is,
howsver, negligivle, as may bpnsecn Dy comparing fig-
ures 5, 6, and 7, and figures & and 9.

Effect of Friction

The effect of viscous friction in the control system,
as has heen noted, is merely to augrent ths resictance to
the aileron motion as expressed Wy . . The resualt

4-D6

may be seen in the charts for in
(figs. & and 9). Osecil
of 3

S ceur over a w1der ranhe
C than with a fri !
g

ctl onless system. Also

fig. 10) the rate of dﬂm"lpg is gererally lower, when
o

Chyg is negative, because of the »nhase lag betwsen 0
aﬁd D&; however, if C is positive, the additionsal

(g
h
damping will retard the motion and extond the range of

stable C
h,
Q
If solid friction is present, the effective valus
of Cp will gradually increase as the oscillations

D5
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N

g to the approximate theory, approaching
lituvde approaches zero, but in actusal

2 allerons to stick at some small

. thile this change in effective

2, the rete of darming will slowly

decrsase or increass, accordingly as Cb 15 noepative
e
or nos lflJG, and Will approach the rate corresnondinz to
the ailerons-fixed v1t*on, as ubOWq by filizure 10. TIn
no casg WL‘L oss wlla‘3ﬂns of Incressing amplitude occur
because of the preesiace of friztion 10 the ailerons are
otherwise stabla. Woreovar, bocausse the damving an=
sroaznes 4 finilte (von-z2ro) rate, thers is no vossi-
bility of steady oscillations, such as occur in &
Pudder-free condit (referasnce 7).

3]
@]

i
okl

e
o)

b~

CONST ST HNMG

au;

ty of an alrplane withh allerons free
arse extont without regard
Y : the rollint motion Jnd tiz
2 pring motions. Noglecting the yawing
ng lexds to =2 simpliFifq analysis itha
doszs not pradict ths occurvence of spirecl instabi
The simpl: analysis dnue, h”VLV)P, nredict the valuss
of the ninge omuntc #t which the instability omes
violunt. Also 2 simplified aralysis will not ineslude
the normal lutHZHL owciLqulon of the alrnlane with con-
trols fixed, but tho atabllity of this mode is nct af -
feated DLy fruel the allerons and that nhass of the
nroblew ig out¢$me the scope of the present investigation.

fat
Ot
e
<

3

>3
‘__J

may be d
to thl o}
\ ”Vh
and 9;@

\'J

¢. Divergence, or an unstable variation I the
control [lorce with alleron deflaction, ia ths only form
of instability likely to occur in the case of mags-
balanced ailerons wlith negative Iloafiug tendenzy,
except for flutter, which is not considered in this
eanalvsis, ™ usc of ailerons vith considerable ten-
denzy to float against the wind, however, introduces
the nossibility of oscillatory motion with the allerons
fres «nd, if the allerons sre aerndynsmically overbal-
anced, of osctll'tory instanility. The unstable oscil-
1 tions exlgl In additlon to the normal rolling-yuwing ’

scillations ‘11%:0’:1110@(1 by the dihedral anzie and by

thu dirocetisnn stability of the alrnlane
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5. As long as the rsstoring moment 1s not comoletely
balanced oun,thp demning of ths alle* cn-frse oscillations
in a mass-balanced system is so great as to make ths os-
cillations appear to be of no practical concern. The
presmnce of unbalanced mass btehind ths nlnge, however,
restricts somewhat the permissible dezree of azerodynamic
balancs.

Zomparison of the 7.—de”ccnt chord znd ZO-Fercent-

chord ailerons shows that aOPOdjl«mlh overpalance is ner-

missible, from considerations of stability, in the case of

shorter, widser-shord allerons if considerable positive

floating ftencdency i3 present. The permitted increase

in aerodynamic balance 1s not enough, howsver, to offset
creas

in stizk force withi aitleron chord.

t cszillations are of hon°iderab1y
) A Lerons then are those that

occur at uhe same sticlk f rce in ithe eczse of narrowsy

aLlerons.

5. The preszence of viscous friction in the control
system has the same effect as increasing the aerodynamic
damping of the ailerons. 1the vresence of so0lid friction
in an otherwiss steble system has the elfect of sraduaally
ircrzasing or decreasing the damming ol the oscillations
as their amplitude decreases so as to ceause the rate of
damping with silerons fres to apprcach the rate with
ailerons fixed. Neither instability nor steady cscilla-
tions will result from the presence of friction.

6. The stability of the control-fres oscillations
is virtually indepsndent of tno momaent of inertia,
floating tendency, or effzsctiveness of the ailerons.

T+ An aivplane with a large ratio of dzrping in
roll to moment of insrtia about the X~-axis cermits a
closcr degree of balance in the allerons befors oscil-
latory instsbility is insurred and, with allerons frec,
such an alrplans 1s gensrally more stobls than one for
which this ratio is smsll.

Lengley Memorial Aeronauticsl Tatcrsbtory,
Fationsl Advisory Committee for ‘ercnautics,
Lengley Field, Va.
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TABLE I
ATRPLANE CHARACTERISTICE

Wing characteristics:

Taper ratio . « + ¢ v v v o ¢ v v 4 e e W 2

Lgpect ratio, A . .+ ¢ . v 0 o v h w e e

Dihedral angle, A, degrees . . . . . . . .

Lift curve slope. ., . . « « « « « o ¢ .,
Hq,

NG O

e
iy
[

5O
b
oj

}._l
o N
AN WU

IZ . . . . . . . . . . [ 1.5
Stability derivatives:
C . . . v . L] e . . . . + . . » - . »* O")"/)-;

Cn . . . . . . . . . . . . . . ] . . . -Oo055
Cn . . . [ . . . . . . . . . . . . . . —9.109
. . . . . . . . .» . . . . . . . . . —Oo\l)88
CZ . . . . . . . . . . . . . . . . . . "0.14.50
CZ . . . . . L] L] . . . . . . . . . . . 0!250

er . . . . . . '. . v . . . . . ’ . » . "O . )_:..l



26 TABLE IT
AILERON CHARACTERTISTICS )
Value
Deriv- . l1S-nercent- |30-nercent-
ative Explanation ’ chord-: chord -
ailerons ailerons
CZ6 From figure 16 of reference 9, -0.,156 -0.156
a
with X = 6"5'8" obtained from
empirical curve of figure 1
herein
CZ CF . ; .
c a = 25 x “rg  (See fig.l.) -0.013 -0.023
'ps | Pms  2mA dau/%5
A+l
5C; i -
> G, T =0q % = D.02ls 0.052L8
S B A
(Reference 6, n. 107)
30, , |
C Ch = =0y — 0.002 0.002
"ns | 'na D5 MA
(Reference 6, »n. 107)
Cy, For frictlionless system. (See -0.110 0,220
D3 fig. 1 for formula.)
C Considered negliglible 9 0
Apy |
C =3 0,66 ¢ 0.72 C
. ) = = Oy, e O s o ( ’
By fing - v/2 Bq g hq
Tror an unnublished uanalysis
correlating wind-tunnel and
flight-test data
= 0 A 0.207% ~ 0.008 C
On, b, 7 Ong 072 oy 5 Cp_
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NACA ... ... TMe 3
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Figure 2,- Character and stabllity of the components of the
motions found by solution of the equations before the
elimination of sideslipping and yawing. (Shading indicates
the unstable region,) Alleron chord, 15-percent airfoil
chord; £ = 0; I, = O; dihedral angle, 59; Cp, = 1.0,
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NACA Fig. 3
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Flgure 3.- Rate of divergence, as indicated by the value
of the positive real roots of the stability equation.
Alleron chord, 15-percent airfoil chord;& = 0; I, = O;
dihedral angle, 5° ; €; = 1.0,
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NACA Fig. 4

Figure 4,~ Character and stability of the components of the
motions with coupling only between aileron movemenis and
rolling angle. Aileron chord, 15-percent airfoll chord;
£ =0; Ig= 0,
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Figure 5.,- Stability boundaries, lines of equal period, and
lines of equal stick ferce for 1l5-percent-chord ailerons.
£=0; I =0, Period P 1is in wing semispans,
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NACA

Fig. 6
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Figure 6.~ Stability boundaries and lines of equal period
for 15-percent-chord ailerons.

Period P

is in wing semispans.

& =0

Ig = 0.0125,
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Figure T7.- Stability boundaries and lines of equal period
for 15-percent-chord ailerons. & = 0; Ig = 0,025,
Period P 1s in wing semispans.
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Figure 8,- Stability boundaries, lines of equal period, and
lines of equal stick force for 30-percent-chord allerons,
£ =0; Ig =0, Period P 18 in wlng semispans,
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Figure 9.- Stability boundaries and lines of equal period
for 30-percent-chord ailerons. & = 0; Ig = 0.025,
Period P 1is 1n wing semispans,
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Figure 10,- Damping of the oscillations measured by the
distance required tc damp to half amplitude, in wing
semispans, for allerons with various values of ChDS‘

Mass-balanced allerons, Ig = 0,0125; Clp/Ix = =0, 4.
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rig. 11

Figure 11l,- Stability boundaries for 15-percent-chord
allerons, showing the effect of varilation in the mass~
moment parameter &, Ig = 0,0125; ChDS = -=0,011,




